Diffusion Brillouin de la lumière dans les solides

Références :

>Vacher R. & Boyer L., "Brillouin scattering : a tool for measurement of elastic and photoelstic constants" Phys. Rev. B, Vol. 6, n°2 (1972) 639-673

Schroeder J., Mohr R., Macedo P.B. & Montrose C.J., J. of Am. Ceram. Soc., Vol. 56, N°10 (1973) 510-514.

Schroeder J., (1974) « Rayleigh and Brillouin scattering in amorphous solids : silicate glasses », Ph. D. dissertation, The catholic University of Am., washington, D. C.

Schroeder J., « Light Scattering of glass », Treatise on Material Science and Technology., Academic Press, New-York, Vol. 12, N° 1 (1975), 157-222.

> Schroeder J., Non-Crystalline Solids vol. 40 (1980) 549-566

E. Dieulesaint & D. Royer, Ondes élastiques dans les solides, applications au traitement du signal, Masson et Cie, 1974, puis nouvelle édition Masson 1999.

Yann Vaills, cours de mécanique des milieux denses, <u>http://www.cemhti.cnrs-orleans.fr/?nom=vaills</u>

« La lumière est le principal personnage dans le tableau » (Light is the main subject of the picture)

I. Light scattering

8th ESG 2006 Sunderland 10-14 Sept

Y. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

II. The Raman effect

 $I_{scatt} = I_{Rayl}(v_0) + I_{Raman}(v_0)$ $v_{Raman} = v_0 \pm v_i$

v_o: incident light frequency*v_i*: *i* vibrational mode frequency

8th ESG 2006 Sunderland 10-14 Sept

V. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

not the same intensities

8th ESG 2006 Sunderland 10-14 Sept

Y. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

CCl₄ Raman spectrum at room temperature

8th ESG 2006 Sunderland 10-14 Sept

V. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

III. The different types of light scattering

Rayleigh scattering
Raman scattering
Brillouin scattering

8th ESG 2006 Sunderland 10-14 Sept

Y. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

Scattering by density inhomogeneities :

Rayleigh scattering (static) Brillouin scattering (dynamic)

$$\boldsymbol{I}_{id} = \boldsymbol{I}_{0} \left(\frac{\boldsymbol{8}\pi^{3}}{\boldsymbol{3}\lambda_{0}^{4}} \right) \boldsymbol{n}^{\boldsymbol{8}} \left(\frac{\boldsymbol{\beta}_{id}}{\rho} \right)^{2} \left\langle \left| \Delta \rho \right|^{2} \right\rangle \boldsymbol{V}_{0} \boldsymbol{k}_{B} \boldsymbol{T}$$

J. Shroeder JACS 1973 ; K. Saito APL 1997

Static fluctuations : structural or chemical fluctuations Dynamical fluctuations : acoustical modes of vibration

8th ESG 2006 Sunderland 10-14 Sept

V. VAILL5 - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

<u>Rayleigh scattering</u>: due to the static fluctuations of refractive index

8th ESG 2006 Sunderland 10-14 Sept

Y. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

The case of a diatomic linear lattice, periodicity : a $\|\vec{q}\| \cong \|\vec{k}_{inc}\| \cong \|\vec{k}_{scatt}\| \cong \frac{2\pi}{\lambda_0} << \frac{\pi}{a}$

8th ESG 2006 Sunderland 10-14 Sept

V. VAILLS - email : vaills@cnrs-orleans.fr http://crmht.cnrs-orleans.fr/pubcrmht/ext/peoplefile.aspx?nom=Vaills

Raie de diffusion Rayleigh

For a right scattering configuration

 $\vec{k}_{inc} \perp \vec{k}_{scatt}$

The example of glasses

$$v_L = \frac{v_0}{c} n \sqrt{2} V_\ell = \frac{v_0}{c} n \sqrt{\frac{2C_{11}}{\rho}}$$

Longitudinal acoustic mode of vibration

$$v_T = \frac{v_0}{c} n \sqrt{2} V_t = \frac{v_0}{c} n \sqrt{\frac{2C_{44}}{\rho}}$$

Transverse acoustic mode of vibration

For a back-scattering configuration k

$$\vec{k}_{inc} \cong -\vec{k}_{scatt}$$

The example of isotropic materials

$$\nu_{B\ell} = \frac{2 n}{\lambda_{lum}} V_{B\ell} = \frac{2 n}{\lambda_{lum}} \sqrt{\frac{C_{11}}{\rho}}$$

Longitudinal acoustic mode of vibration frequency

$$v_{Bt} = \frac{2 n}{\lambda_{lum}} V_{Bt} = \frac{2 n}{\lambda_{lum}} \sqrt{\frac{C_{44}}{\rho}}$$

Transverse acoustic mode of vibration frequency

Remarque pour les expériences en température

Déterminer les constantes élastiques en fonction de la température nécessite de connaitre les variations de ρ et n en fonction de T

$$v_{B\ell} = \frac{2 n}{\lambda_{lum}} V_{B\ell} = \frac{2 n}{\lambda_{lum}} \sqrt{\frac{C_{11}}{\rho}} \qquad v_{Bt} = \frac{2 n}{\lambda_{lum}} V_{Bt} = \frac{2 n}{\lambda_{lum}} \sqrt{\frac{C_{44}}{\rho}}$$

La connaissance de $\rho(T)$ suffit, n(T)est déduit par la relation de Clausius-Mosotti

 $\frac{\mathcal{N}\,\overline{\alpha}}{3\varepsilon_0} = \frac{M}{\rho}\,\frac{\varepsilon-\varepsilon_0}{\varepsilon+2\varepsilon_0}$

Et dans le cas d'un milieu diélectrique non magnétique par la relation de Lorentz-Lorenz :

$$\frac{\mathcal{N}\,\overline{\alpha}}{3\varepsilon_0} = \frac{M}{\rho}\,\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{M}{\rho}\,\frac{n^2 - 1}{n^2 + 2}$$

(SI)

<u>2. Line intensities</u>

From the Brillouin line intensities we deduce

 The photo-elastic constants of the materials Coupling between elastic waves and electromagnetic waves
 electromagnetic energy loss in materials Attenuation of electromagnetic wave in optical fibers

fictive temperature of glasses

IV. LA DIFFUSION BRILLOUIN DANS LE CAS LE PLUS GÉNÉRAL DES MILIEUX ANISOTROPES

EQUATION DE PROPAGATION

(Yann Vaills, cours de mécanique des milieux denses, <u>http://www.cemhti.cnrs-orleans.fr/?nom=vaills)</u>

L'équation fondamentale de la dynamique en l'absence de champ de force

 $\rho \frac{\partial^2 \boldsymbol{u}_i}{\partial \boldsymbol{t}^2} = \frac{\partial \boldsymbol{T}_{ij}}{\partial \boldsymbol{x}_i}$

Avec

$$T_{ij} = C_{ijkl} S_{kl}$$

loi de Hooke

la solution générale
$$u = F\left(t - \frac{x}{V}\right)$$
 et $S_{kl} = \frac{1}{2}\left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k}\right)$

en reportant cette solution dans l'équation du mouvement il vient :

$$\rho^{0} u_{i} = C_{ijkl} \frac{n_{j} n_{k}}{V^{2}} u_{l}$$

$$\rho^{0} u_{i} = C_{ijkl} \frac{n_{j} n_{k}}{V^{2}} u_{l}$$

 (n_1, n_2, n_3) vecteur unitaire parallèle à la direction de propagation de l'onde

soit

$$\rho V^{2 o} U_i = \Gamma_{ii} o U_i$$

équation de Christoffel

avec $\Gamma_{il} = C_{ijkl} n_j n_k$

Rappel sur la signification de cette notation :

$$\Gamma_{il} = \sum_{j=1}^{3} \sum_{k=1}^{3} C_{ijkl} n_j n_k$$

l'équation $\Gamma_{il} = C_{ijkl}n_jn_k$ se développe de la façon suivante : Avec les éléments de la matrice de Christoffel

 $\begin{bmatrix} \Gamma_{1} \\ \Gamma_{2} \\ \Gamma_{3} \\ \Gamma_{4} \\ \Gamma_{5} \\ \Gamma_{6} \end{bmatrix} = \begin{bmatrix} \Gamma_{11} \\ \Gamma_{22} \\ \Gamma_{33} \\ \Gamma_{23} \\ \Gamma_{13} \\ \Gamma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{66} & C_{55} & 2C_{56} & 2C_{15} & 2C_{16} \\ C_{66} & C_{22} & C_{44} & 2C_{24} & 2C_{46} & 2C_{26} \\ C_{55} & C_{44} & C_{33} & 2C_{34} & 2C_{35} & 2C_{45} \\ C_{55} & C_{44} & C_{33} & 2C_{34} & 2C_{35} & 2C_{45} \\ C_{56} & C_{24} & C_{34} & C_{23} + C_{44} & C_{36} + C_{45} & C_{25} + C_{46} \\ C_{15} & C_{46} & C_{35} & C_{36} + C_{45} & C_{13} + C_{55} & C_{14} + C_{56} \\ C_{16} & C_{26} & C_{45} & C_{25} + C_{46} & C_{14} + C_{56} & C_{12} + C_{66} \end{bmatrix} \cdot \begin{bmatrix} n_{1}^{2} \\ n_{2}^{2} \\ n_{3}^{2} \\ n_{3}^{2} \\ n_{2}n_{3} \\ n_{1}n_{3} \\ n_{1}n_{2} \end{bmatrix}$

 $\vec{n} = \frac{\vec{q}}{\|\vec{q}\|}$

Défini la direction dans laquelle on choisi de caractériser les propriétés du matériau

Est le vecteur d'onde des ondes qui se propagent dans ladite direction

$$\overline{\overline{\Gamma}} \cdot {}^{o} \overline{u} = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & \Gamma_{13} \\ \Gamma_{21} & \Gamma_{22} & \Gamma_{23} \\ \Gamma_{31} & \Gamma_{32} & \Gamma_{33} \end{bmatrix} \cdot \begin{bmatrix} {}^{o} u_{1} \\ {}^{o} u_{2} \\ {}^{o} u_{3} \end{bmatrix} = \rho V^{2} \begin{bmatrix} {}^{o} u_{1} \\ {}^{o} u_{2} \\ {}^{o} u_{3} \end{bmatrix}$$

la résolution de cette équation est la résolution du **problème aux** valeurs propres et aux vecteurs propres.

 $\overline{\overline{\Gamma}} = [\Gamma_{ii}]$ est un tenseur de rang 2 et l'équation de Christoffel, qui est l'équation de propagation des ondes de déformation dans le milieu considéré

> Il a pour *vecteurs propres* les vecteurs polarisations des ondes

$${}^{{}_{\scriptscriptstyle \alpha}}\vec{u}_{i} = \left({}^{{}_{\scriptscriptstyle \alpha}}u_{1}, {}^{{}_{\scriptscriptstyle \alpha}}u_{2}, {}^{{}_{\scriptscriptstyle \alpha}}u_{3}\right)$$

> et pour *valeurs propres* le carré des vitesses de propagation correspondantes multipliées par la masse volumique du milieu

$$^{\alpha}\gamma = \rho \ ^{\alpha}V^{2}$$

EXEMPLE DE PROPAGATION

Déterminons les caractéristiques (vitesses et polarisations) des ondes élastiques qui se propagent dans la direction $\vec{n}(0,0,1)$ parallèle à Ox_3 .

Dans le cas général chaque élément $\Gamma_{il} = \sum_{j=1}^{n} \sum_{k=1}^{n} C_{ijkl} n_j n_k$ s'écrit :

 $\Gamma_{il} = C_{i11l} n_1^2 + C_{i22l} n_2^2 + C_{i33l} n_3^2 + (C_{i12l} + C_{i21l}) n_1 n_2 +$

 $(C_{i13l} + C_{i31l}) n_1 n_3 + (C_{i23l} + C_{i23l}) n_3 n_2 = C_{i33l} n_3^2$

le tenseur $[\Gamma_{ii}]$ s'écrira donc

 $[\Gamma]_{(0,0,1)} = \begin{bmatrix} C_{55} & C_{45} & C_{35} \\ C_{45} & C_{44} & C_{34} \\ C_{35} & C_{34} & C_{33} \end{bmatrix}$

Supposons que le milieu dans lequel se propage l'onde ait un axe de symétrie binaire (type A_2) selon Ox_3 (c'est le cas d'un milieu monoclinique).

Ó.

composante non nulle composante nulle

composantes égales •—• composantes opposées

× composante égale à $(c_{11} - c_{12})/2$

La symétrie par rapport à la diagonale principale n'est pas mentionnée. Le nombre de constantes indépendantes est indiqué en bas à droite de chaque matrice.

On voit que
$$C_{34} = C_{35} = 0$$
 $[\Gamma]_{(0,0,1)//A_2} = \begin{bmatrix} C_{55} & C_{45} & 0 \\ C_{45} & C_{44} & 0 \\ 0 & 0 & C_{33} \end{bmatrix}$

Ils se propagent donc dans ce milieu :

et

> Une onde longitudinale à la vitesse

$$V_L = \sqrt{\mathcal{C}_{33}/
ho}$$

Г л

> Deux ondes transversales se propageant respectivement avec les vitesses suivantes que l'on obtient par diagonalisation de $[\Gamma]_{(0,0,1)}$

$$V_{T_{I}} = \sqrt{\frac{C_{44} + C_{55} + \sqrt{(C_{44} - C_{55})^{2} + 4(C_{45})^{2}}{2\rho}}{2\rho}}$$

$$V_{T_{2}} = \sqrt{\frac{C_{44} + C_{55} - \sqrt{(C_{44} - C_{55})^{2} + 4(C_{45})^{2}}{2\rho}}{2\rho}}$$

Propriétés photoélastiques des matériaux

$$I_{id} = I_0 \left(\frac{\pi^2}{2\lambda_0^4} \right) n_i^3 n_d^5 k_B T \left(\frac{\beta_{id}}{\rho V^2} \right) v_0$$

λ_o est la longueur d'onde dans le vide de l'onde lumineuse incidente ;
 n_i est l'indice de réfraction du milieu étudié pour l'onde lumineuse incidente ;
 n_d est l'indice de réfraction du milieu étudié pour l'onde lumineuse diffusée ;
 ρ est la masse volumique du milieu diffusant ;

Vest la vitesse de l'onde acoustique qui interagit avec l'onde lumineuse ;
 β_{id} est lié (voir plus loin) à la variation ΔB_{id} du tenseur impermittivité B_{id}

inverse de la permittivité diélectrique Eid :

$$\varepsilon_{ij} \mathbf{B}_{jd} = \delta_{id}$$

Schroeder J., et al (1973 & 1980)

<u>Remarque</u> : les indices _j et _d font référence aux indices des axes selon lesquels sont dirigées les <u>polarisations des rayons lumineux</u> <u>i</u>ncident et le rayon lumineux <u>d</u>iffusé

Rappel sur l'ellipsoïde des indices

Dans un milieu isotrope la lumière se propage à la vitesse c telle que : $c = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{1}{\sqrt{\varepsilon_0\mu_0}} \frac{1}{\sqrt{\varepsilon_r\mu_r}} = \frac{c_0}{\sqrt{\varepsilon_r\mu_r}} = \frac{c_0}{n}$ Dans un milieu non magnétique $\mu_r = 1$ donc $n = \varepsilon_r^{1/2}$ L'ellipsoïde des indices est une sphère d'équation : $\frac{x_1^2 + x_2^2 + x_3^2}{c} = \frac{x_1^2 + x_2^2 + x_3^2}{n^2} = 1 \text{ ou } \left(x_1^2 + x_2^2 + x_3^2\right) \cdot B = 1 \text{ avec } B = \frac{1}{c}$ Dans <u>un milieu anisotrope</u> ε_{ij} est un tenseur symétrique, et B_{ij} est le tenseur inverse $\varepsilon_{ii} B_{id} = \delta_{id}$ L'ellipsoïde des indices est alors B_{ij} x_i x_j=1 : $\frac{x_1^2}{n_1^2} + \frac{x_2^2}{n_2^2} + \frac{x_3^2}{n_2^2} = 1$ Et dans son système d'axes propres devient :

Coefficient du tenseur élasto-optique (ou coefficients de Pockels)

Au passage d'une onde de déformation S_{kl} le solide voit son ellipsoïde des indices se modifier de la façon suivante :

 $\Delta B_{ij} = p_{ijkl} S_{kl}$

où pijk sont les composantes du tenseur élasto-optique de rang 4

Ski sont les composantes du tenseur des déformations

$$S_{kl} = \frac{1}{2} \left(\frac{\partial u_{l}}{\partial x_{k}} + \frac{\partial u_{k}}{\partial x_{l}} \right)$$

En notation contractée :

 $S_1 = S_{11}$ $S_2 = S_{22}$ $S_3 = S_{33}$ $S_4 = 2S_{23}$ $S_5 = 2S_{13}$ $S_6 = 2S_{12}$

L'onde élastique s'écrit :

$$\vec{u} = \vec{u}_o \cos(2\pi v t - \vec{q}.\vec{r} + \varphi)$$

 $\vec{q} = q(\chi_1, \chi_2, \chi_3) \qquad \vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$

On voit que :

$$\frac{\partial u_1}{\partial x_1} = u_0 q \alpha_1 \chi_1 \sin \left[2\pi v t - q(\chi_1 x_1 + \chi_2 x_2 + \chi_3 x_3) + \varphi \right]$$

$$\frac{\partial u_2}{\partial x_2} = u_0 q \alpha_2 \chi_2 \sin \left[2\pi v t - q(\chi_1 x_1 + \chi_2 x_2 + \chi_3 x_3) + \varphi \right]$$

etc. ...

 $s_{1} = \alpha_{1} \chi_{1}$ $s_{4} = \alpha_{3} \chi_{2} + \alpha_{2} \chi_{3}$ $s_{2} = \alpha_{2} \chi_{2}$ $s_{5} = \alpha_{3} \chi_{1} + \alpha_{1} \chi_{3}$ $s_{3} = \alpha_{3} \chi_{3}$ $s_{6} = \alpha_{1} \chi_{2} + \alpha_{2} \chi_{1}$ Diffusion Brillouin de la lumière dans les solides

d'où on a :

 $S_{1} = s_{1}u_{0}q \sin(2\pi vt - \vec{q}.\vec{r} + \varphi)$ $S_{2} = \dots$ $S_{6} = s_{6}u_{0}q \sin(2\pi vt - \vec{q}.\vec{r} + \varphi)$

Or (en notation contractée) :

$$[\Delta B]_{i} = [\Delta \varepsilon^{-1}]_{i} = \sum p_{ik}S_{k}$$

donc $\left[\Delta B J_{i} = \sum_{k} p_{ik} s_{k} u_{0} q \sin(2\pi v t - \bar{q}.\bar{r} + \varphi) \right]$ on écrira alors $\beta_{i} = p_{ik} s_{k}$

k

La relation donnant les composantes (en indices contractés) de la variation du tenseur d'impermittivité $\Delta B_k = \beta_k$ en fonction des composantes du tenseur des déformations est :

 $\boldsymbol{I}_{id} = \boldsymbol{I}_{0} \left(\frac{\pi^{2}}{2\lambda^{4}} \right) \boldsymbol{n}_{i}^{3} \boldsymbol{n}_{d}^{5} \boldsymbol{k}_{B} \boldsymbol{T} \left(\frac{\beta_{id}}{2\lambda^{2}} \right)$ **v**o

Remarque : ce tableau n'est pas identique à celui des constantes élastiques car ces dernières doivent notamment satisfaire des constraintes thermodynamiques auxquelles les constantes élastooptiuqes ne sont pas soumises. Il s'en suit que $C_{\alpha\beta} = \frac{\partial^2 F}{\partial S_{\beta} \partial S_{\alpha}} = \frac{\partial^2 F}{\partial S_{\alpha} \partial S_{\beta}} = C_{\beta\alpha}$

et que seul le tableau des $C_{\alpha\beta}$ Est symétrique en toutes circonstances. (voir par exemple : Cours de mécanique des milieux denses, Chap. Propriétés mécaniques de la matières A.III.3 *iii*)

http://www.cemhti.cnrs-orleans.fr/?nom=vaills)

Diffusion

INTERACTION ÉLASTO-OPTIQUE

FIG 8. 6. — Tableau des matrices élasto-optiques $p_{\alpha\beta}$ • composante non nulle composante nulle • composantes égales • composantes opposées × composante égale à $(p_{11} - p_{12})/2$.

316

<u>Application</u> : les système trigonal 32 (ex. : $AIPO_4$)

0 **P**₁₁ **p**₁₂ **p**₁₃ **p**₁₄ 0 0 p_{21} p_{11} p_{13} $- p_{14}$ $\begin{bmatrix} p_{ik} \end{bmatrix} = \begin{vmatrix} p_{21} & p_{11} & p_{12} \\ p_{31} & p_{31} & p_{33} & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 \\ 0 & 0 & 0 & 0 & p_{44} \\ 0 & 0 & 0 & 0 & p_{44} \\ \hline 0 & 0 & 0 & 0 & p_{14} & \underline{p_1} \end{vmatrix}$ 0 0 0 0 **P**₄₁ $p_{11} - p_{12}$ 0 0 **p**₁₁ **P**12 **p**₁₃ **p**₁₄ ΔB_1 S_1 p_{21} p_{11} p_{13} **S**2 ΔB_2 S_{3} ΔB_3 = • *S*₄ Δ**B**₄ 0 0 0 0 0 0 0 0 S_{5} **p**₄₄ **P**₄₁ ΔB_{5} **p**₁₁ - **p**₁₂ **P**41 S_{6} ΔB_{κ} 2

<u>Cas d'un solide isotrope</u>: Le tableau des constantes photo-élastiques se réduit à

$$\left[p_{ik} \right] = \begin{vmatrix} p_{11} & p_{12} & p_{12} & 0 & 0 & 0 \\ p_{12} & p_{11} & p_{12} & 0 & 0 & 0 \\ p_{12} & p_{12} & p_{11} & 0 & 0 & 0 \\ p_{12} & p_{12} & p_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & (p_{11} - p_{12})/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & (p_{11} - p_{12})/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & (p_{11} - p_{12})/2 \end{vmatrix}$$

TABLEAU 8. 7. — Constantes élasto-optiques de quelques matériaux mesurées par diffraction de la lumière du laser He-Ne (0,6328 μ m), excepté pour le quartz ($\Lambda_0 = 0,589 \mu$ m)

MATÉRIAUX	P11	P12	<i>p</i> 21	P22	P13	P31	P33	P23	P32	<i>p</i> 14	P41 .	P44	P45	P 55	P ₁₆	P 61	P66	RÉF.
Silice (isotrope)	0,121	0,270	P12	P11	P12	p12	P11	P12	<i>p</i> ₁₂	0	0	[0,075]	0	P44	0	0	 P44	[5]
α-HIO3(222)	0,406	0,277	0,279	0,343	0,304	0,503	0,334	0,305	0,310	0	0	—	0	—	0	0	0,092	[6]
$PbMoO_4(4/m)$.	0,24	0,24	P12	<i>P</i> ₁₁	0,255	0,175	0,300	<i>p</i> ₁₃	P31	0	0	0,067	-0,01	P44	0,017	0,013	0,05	[14]
$TiO_2(4/mmm)$	0,011	0,172	<i>p</i> ₁₂	P11	0,168	0,096	0,058	p13	P31	0	0	—	0	P44	0	0		[7]
TeO ₂ (422)	0,007	0,187	P12	<i>p</i> ₁₁	0,340	0,090	0,240	P13	P31	0	0	-0,17	0	P44	0	0	-0,046	[8]
$LiNbO_3(3m)$	0,036	0,072	P12	P11	0,092	0,178	0,088	P13	P31	0,07 (ª)	0,155	—	0	P44	0	0	[0,018]	[7]
LiTaO3(3m)	0,080	0,080	P12	<i>p</i> ₁₁	0,094	0,086	0,150	P13	P31	0,031	0,024	0,022	0	P44	0	0	[0,00]	[7]
Quartz $\alpha(32)$	0,138	0,250	<i>p</i> 12	P11	0,259	0,258	0,098	P13	p ₃₁	-0,029	-0,042	-0,068	0	P44	0	0	[0,056]	[9]
]														 	
(ª) Valeur d	létermin	ée par l	I. Reini	JES and	M. B.	SCHULZ	z. — J.	Appl. P	hys., 39	, 5254 (1968).							
Les valeurs	entre ci	rochets	sont ég	ales à ^P	$\frac{p_1 - p_1}{2}$	2.												

Diffusion Brillouin de la lumière dans les solides

с С Lorsque les axes ; et , qui définissent les directions de polarisation des ondes lumineuses incidente et diffusée (calcul de $\Delta B'_{id}$) ne sont pas ceux dans lesquels le tenseur photo-élastique p_{mnpq} a la forme la plus simple (axes de symétrie du cristal - « axes propres ») alors il est faut calculer les éléments $\Delta B'_{id}$ en fonction des ΔB_{id} en prenant en compte la matrice R de rotation qui permet de passer du système des « axes propres » du matériau au système défini par les directions ; et d et leur axe perpendiculaire (axes de l'expérience).

On a ainsi :

Dans le système d'axes propres de p_{ijkl} : $[\Delta D] = [\Delta \varepsilon] \cdot E$

Dans le système défini à l'aide des direction d'incidence et de diffusion : $[\Delta D'] = [\Delta \varepsilon'] \cdot E'$

Avec *R* la ,matrice de rotation qui permet de passer des axes propres aux axes de l'expérience

> D'où : $[\Delta \varepsilon'] = R.[\Delta \varepsilon].R^{-1}$ De même : $[\Delta B'] = R.[\Delta B].R^{-1}$

Cas d'une rotation de θ autour de l'axes Ox_1 du système d'axes propres du cristal

 $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \qquad R^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$

 $\begin{bmatrix} \Delta B_{11}' \\ \Delta B_{22}' \\ \Delta B_{33}' \\ \Delta B_{33}' \\ \Delta B_{23}' \\ \Delta B_{13}' \\ \Delta B_{12}' \end{bmatrix} = \begin{bmatrix} \beta'_1 \\ \beta'_2 \\ \beta'_3 \\ \beta'_4 \\ \beta'_5 \\ \beta'_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos^2 \theta & \sin^2 \theta & \sin 2\theta & 0 & 0 \\ 0 & \sin^2 \theta & \cos^2 \theta & -\sin 2\theta & 0 & 0 \\ 0 & -\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \theta & -\sin \theta \\ 0 & 0 & 0 & \cos \theta & \sin \theta \cos \theta \end{bmatrix} \begin{bmatrix} \Delta B_{11} \\ \Delta B_{22} \\ \Delta B_{33} \\ \Delta B_{23} \\ \Delta B_{13} \\ \Delta B_{12} \end{bmatrix}$

<u>Cas d'une rotation de θ autour de l'axes Ox₂ du</u> système d'axes propres du cristal

 $R = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad R^{-1} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$

 $\begin{bmatrix} \Delta B_{11}' \\ \Delta B_{22}' \\ \Delta B_{33}' \\ \Delta B_{33}' \\ \Delta B_{23}' \\ \Delta B_{13}' \\ \Delta B_{13}' \\ \Delta B_{12}' \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & 0 & \sin^2 \theta & 0 & -\sin 2\theta & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \sin^2 \theta & 0 & \cos^2 \theta & 0 & \sin 2\theta & 0 \\ \sin^2 \theta & 0 & \cos^2 \theta & 0 & \sin 2\theta & 0 \\ 0 & 0 & 0 & \cos \theta & 0 & \sin \theta \\ \sin \theta \cos \theta & 0 & -\sin \theta \cos \theta & 0 & \cos^2 \theta - \sin^2 \theta & 0 \\ \sin \theta \cos \theta & 0 & 0 & -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \Delta B_{11} \\ \Delta B_{22} \\ \Delta B_{33} \\ \Delta B_{23} \\ \Delta B_{13} \\ \Delta B_{12} \end{bmatrix}$

<u>Cas d'une rotation de θ autour de l'axes Ox₃ du</u> système d'axes propres du cristal

 $R = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Δ B ₁₁ ′	100	β'_1	$\cos^2 \theta$	sin² θ	0	0	0	sin 20	$\left[\Delta B_{11} \right]$
∆ B ₂₂ ′	ΞP.	β'2	sin² θ	$\cos^2 \theta$	0	0	0	- sin 200	Δ B ₂₂
∆ B ₃₃ ′		β'3	0	0	1	0	0	0	ΔB_{33}
∆ B ₂₃ ′		β'4	0	0	0	– sin θ	$\cos \theta$	0	Δ B ₂₃
∆ B ₁₃ ′		β'5	0	0	0	cos θ	sin $ heta$	0	ΔB_{13}
∆ B ₁₂ ′		β'6	- sin θ cos θ	sin θ cos θ	0	0	0	$\cos^2 \theta - \sin^2 \theta$	ΔB_{12}

<u>Application</u> : les système trigonal 32 (ex. : $AIPO_4$) 0 0 **P**₁₂ **P**₁₃ **p**₁₄ **P**₁₁ ΔB_{1} S_1 0 0 **P**₁₁ **P**13 **P**₂₁ **p**₁₄ **S**₂ ΔB_{2} 0 0 0 p_{31} p_{33} **P**31 **S**3 ΔB_3 0 = 0 **p**_44 **P**₄₁ - **p**₄₁ *S*₄ Δ**B**₄ 0 0 0 0 **P**₄₄ **P**₄₁ S_{5} ΔB_{5} $p_{11} - p_{12}$ 0 0 0 S_{6} 0 **P**₄₁ ΔB_{6} 2 0 0 **P**₁₁ **p**₁₂ **P**₁₃ **P**₁₄ β_1 **S**₁ 0 0 **P**₁₁ **P**₁₃ **P**₂₁ - **p**₁₄ β_2 **S**2 0 0 0 p_{31} p_{33} **P**₃₁ β_3 **S**3 = 0 0 0 β_4 - **p**₄₁ **P**₄₄ **P**₄₁ . S_4 0 0 0 0 **P**₄₄ **P**₄₁ β_5 S_5 **p**₁₁ - **p**₁₂ 0 0 0 0 β_6 **P**₁₄ **S**₆ 2

<u>Application</u> : les système trigonal 32 (ex. : AlPO₄) les 6 éléments du tenseur β : $\beta_{11} \equiv \beta_1$

$$\begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \end{vmatrix} = \begin{vmatrix} p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 \\ p_{21} & p_{11} & p_{13} & -p_{14} & 0 & 0 \\ p_{31} & p_{31} & p_{33} & 0 & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & p_{41} \\ 0 & 0 & 0 & 0 & p_{14} & \frac{p_{11} - p_{12}}{2} \end{vmatrix} \begin{vmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \end{vmatrix}$$

 $\beta_{11} = p_{11}s_1 + p_{12}s_2 + p_{13}s_3 + p_{14}s_4$

$\vec{q} = q(\chi_1, \chi_2, \chi_3)$	$\vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$
$\boldsymbol{s}_{1} = \boldsymbol{\alpha}_{1} \boldsymbol{\chi}_{1}$	$\boldsymbol{S}_{4} = \alpha_{3} \chi_{2} + \alpha_{2} \chi_{3}$
$\mathbf{S}_{2} = \alpha_{2} \chi_{2}$	$\boldsymbol{s}_{5} = \boldsymbol{\alpha}_{3} \boldsymbol{\chi}_{1} + \boldsymbol{\alpha}_{1} \boldsymbol{\chi}_{3}$
$\mathbf{S}_{3} = \alpha_{3} \chi_{3}$	$\boldsymbol{s}_{6} = \alpha_{1}\chi_{2} + \alpha_{2}\chi_{1}$

<u>Application</u> : les système trigonal 32 (ex. : AlPO₄) les 6 éléments du tenseur β : $\beta_{22} \equiv \beta_2$

$$\begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \end{vmatrix} = \begin{vmatrix} p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 \\ p_{21} & p_{11} & p_{13} & -p_{14} & 0 & 0 \\ p_{31} & p_{31} & p_{33} & 0 & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & p_{41} \\ 0 & 0 & 0 & 0 & p_{14} & \frac{p_{11} - p_{12}}{2} \end{vmatrix} \begin{vmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \end{vmatrix}$$

 $\beta_{22} = p_{12}s_1 + p_{11}s_2 + p_{13}s_3 - p_{14}s_4$

 $\vec{q} = q(\chi_1, \chi_2, \chi_3) \quad \vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$ $\boldsymbol{s}_{1} = \boldsymbol{\alpha}_{1} \boldsymbol{\chi}_{1}$ $\boldsymbol{s}_{4} = \alpha_{3}\chi_{2} + \alpha_{2}\chi_{3}$ $\mathbf{S}_{2} = \alpha_{2} \chi_{2}$ $\boldsymbol{s}_{5} = \boldsymbol{\alpha}_{3} \boldsymbol{\chi}_{1} + \boldsymbol{\alpha}_{1} \boldsymbol{\chi}_{3}$ $\boldsymbol{s}_{6} = \alpha_{1}\chi_{2} + \alpha_{2}\chi_{1}$ $\boldsymbol{s}_{3} = \alpha_{3} \chi_{3}$ bittusion Brillouin de la lumiere dans les sollaes

<u>Application</u> : les système trigonal 32 (ex. : AlPO₄) les 6 éléments du tenseur β : $\beta_{33} \equiv \beta_3$

$$\begin{vmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{3} \\ \beta_{4} \\ \beta_{5} \\ \beta_{6} \end{vmatrix} = \begin{vmatrix} p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 \\ p_{21} & p_{11} & p_{13} & -p_{14} & 0 & 0 \\ p_{31} & p_{31} & p_{33} & 0 & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & p_{41} \\ 0 & 0 & 0 & 0 & p_{14} & \frac{p_{11} - p_{12}}{2} \end{vmatrix} \cdot \begin{vmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \end{vmatrix}$$

 $\beta_{33} = p_{31}(s_1 + s_2) + p_{33}s_3$

 $\vec{q} = q(\chi_1, \chi_2, \chi_3)$ $\vec{u}_{0} = u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3})$ $\boldsymbol{s}_{4} = \alpha_{3} \chi_{2} + \alpha_{2} \chi_{3}$ $\boldsymbol{s}_{1} = \boldsymbol{\alpha}_{1} \boldsymbol{\chi}_{1}$ $\boldsymbol{s}_{2} = \alpha_{2} \chi_{2}$ $\boldsymbol{s}_{5} = \boldsymbol{\alpha}_{3}\boldsymbol{\chi}_{1} + \boldsymbol{\alpha}_{1}\boldsymbol{\chi}_{3}$ $\mathbf{S}_{3} = \alpha_{3} \chi_{3}$ $\boldsymbol{s}_{6} = \alpha_{1}\chi_{2} + \alpha_{2}\chi_{1}$ Diffusion Brillouin de la lumière dans les solides

<u>Application</u> : les système trigonal 32 (ex. : AlPO₄) les 6 éléments du tenseur β : $\beta_{23} \equiv \beta_4$

$$\begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \end{vmatrix} = \begin{vmatrix} p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 \\ p_{21} & p_{11} & p_{13} & -p_{14} & 0 & 0 \\ p_{31} & p_{31} & p_{33} & 0 & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & p_{41} \\ 0 & 0 & 0 & 0 & p_{14} & \frac{p_{11} - p_{12}}{2} \end{vmatrix} . \begin{vmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \end{vmatrix}$$

 $\beta_{23} = p_{41}(s_1 - s_2) + p_{44}s_4$ $\vec{q} = q(\chi_1, \chi_2, \chi_3) \qquad \vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$ $s_1 = \alpha_1 \chi_1$ $s_2 = \alpha_2 \chi_2$ $s_3 = \alpha_3 \chi_3 \qquad s_6 = \alpha_1 \chi_2 + \alpha_2 \chi_1$ Diffusion Brillouin de la lumière dans les solides

<u>Application</u> : les système trigonal 32 (ex. : $AIPO_4$) les 6 éléments du tenseur β : $\beta_{13} \equiv \beta_5$

 p_{11} p_{12} **P**₁₃ **P**₁₄ **S**₁ 5, **S**3 *S*⊿ **P**₄₁ **S**₅ $\frac{p_{11} - p_{12}}{2}$ **P**14 **S**6

 $\beta_{13} = p_{44}S_5 + p_{41}S_6$

 $\vec{q} = q(\chi_1, \chi_2, \chi_3) \quad \vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$ $\boldsymbol{s}_{1} = \alpha_{1} \chi_{1}$ $\boldsymbol{s}_{4} = \alpha_{3} \chi_{2} + \alpha_{2} \chi_{3}$ $\mathbf{S}_{2} = \alpha_{2} \chi_{2}$ $\boldsymbol{s}_{5} = \boldsymbol{\alpha}_{3}\boldsymbol{\chi}_{1} + \boldsymbol{\alpha}_{1}\boldsymbol{\chi}_{3}$ $\mathbf{S}_{3} = \alpha_{3} \chi_{3}$ $\boldsymbol{s}_{6} = \alpha_{1} \chi_{2} + \alpha_{2} \chi_{1}$

<u>Application</u> : les système trigonal 32 (ex. : AlPO₄) les 6 éléments du tenseur β : $\beta_{12} \equiv \beta_6$

$$\begin{vmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{4} \\ \beta_{5} \\ \beta_{6} \end{vmatrix} = \begin{vmatrix} p_{11} & p_{12} & p_{13} & p_{14} & 0 & 0 \\ p_{21} & p_{11} & p_{13} & -p_{14} & 0 & 0 \\ p_{31} & p_{31} & p_{33} & 0 & 0 & 0 \\ p_{41} & -p_{41} & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & p_{41} \\ 0 & 0 & 0 & 0 & p_{14} & \frac{p_{11} - p_{12}}{2} \end{vmatrix} \begin{vmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \end{vmatrix}$$

 $\beta_{12} = p_{14}s_5 + \frac{p_{11} - p_{12}}{2}s_6$ $\vec{q} = q(\chi_1, \chi_2, \chi_3)$ $\vec{u}_{o} = u_{o}(\alpha_{1}, \alpha_{2}, \alpha_{3})$ $\boldsymbol{s}_{4} = \alpha_{3}\chi_{2} + \alpha_{2}\chi_{3}$ $\mathbf{S}_{1} = \alpha_{1} \chi_{1}$ $\boldsymbol{s}_{2} = \alpha_{2} \chi_{2}$ $\boldsymbol{s}_{5} = \boldsymbol{\alpha}_{3}\boldsymbol{\chi}_{1} + \boldsymbol{\alpha}_{1}\boldsymbol{\chi}_{3}$ $\boldsymbol{s}_{3} = \boldsymbol{\alpha}_{3} \boldsymbol{\chi}_{3}$ $\boldsymbol{s}_{\boldsymbol{\lambda}} = \boldsymbol{\alpha}_{1}\boldsymbol{\chi}_{2} + \boldsymbol{\alpha}_{2}\boldsymbol{\chi}_{1}$

Configurations expérimentales

 V : perpendiculaire au plan de diffusion H : dans le plan de diffusion Indice i : rayon lumineux./photon incident
 Indice d : rayon lumineux./photon diffusé

 $\vec{q} = \vec{k_i} + \vec{k_d} = \frac{k_i}{k_i} k_i + \frac{k_d}{k_d} k_d = \frac{k_i}{k_i} \frac{\omega_i}{c_i} + \frac{k_d}{k_d} \frac{\omega_d}{c_d}$

 $\vec{q} = \vec{u}_i \frac{\omega_i n_i}{c} + \vec{u}_d \frac{(\omega_i + \Omega) n_d}{c} \cong \vec{u}_i \frac{\omega_i n_i}{c} + \vec{u}_d \frac{\omega_i n_d}{c}$

 $\vec{q} \cong \frac{\omega_i}{c} (\vec{u}_i \vec{n}_i + \vec{u}_d \vec{n}_d) \qquad q = k_i / \cos \theta$

Et dans le cas de la diffusion à 90° et où $n_i = n_d$ $q = k_i \sqrt{2}$

On voit que pour une même configuration expérimentale, des polarisations différentes des ondes incidentes et diffusées peuvent mettre en jeu des ondes élastiques de vecteurs d'ondes différents, donc « sonder » les propriétés physiques dans des directions différentes

Diffusion Brillouin de la lumière dans les solides

 $\omega_i \approx 20\ 000\ \mathrm{cm}^-$

 $\Omega \approx 1 \, \mathrm{cm}^{-1}$

$$\begin{split} \vec{k}_{d} & \vec{q} \\ [\Gamma] = \begin{pmatrix} \zeta_{44} & 0 & 0 \\ 0 & \zeta_{44} & 0 \\ 0 & 0 & \zeta_{33} \end{pmatrix} \quad \text{Pour } n_{i} = n_{d} \\ \vec{q}(\chi_{1}, \chi_{2}, \chi_{3}) = q(0, 0, 1) \quad \vec{u}_{0} = U_{0}(\alpha_{1}, \alpha, \alpha_{3}) \\ \vec{q}(\chi_{1}, \chi_{2}, \chi_{3}) = q(0, 0, 1) \quad \vec{u}_{0} = U_{0}(\alpha_{1}, \alpha, \alpha_{3}) \\ Coordonnées exprimées dans le repère (X, Z) \\ \vec{v}_{L} = \frac{v_{\alpha}}{c} \sqrt{n_{i}^{2}} + n_{d}^{2} \sqrt{2} V_{i} = \frac{v_{\alpha}}{c} n_{\chi} \sqrt{\frac{2}{\rho}} \\ \vec{v}_{L} = v_{\pi_{2}} = \frac{v_{\alpha}}{c} \sqrt{n_{i}^{2}} + n_{d}^{2} \sqrt{2} V_{i} = \frac{v_{\alpha}}{c} n_{\chi} \sqrt{\frac{2}{\rho}} \\ \text{Lessystème d'axes } (x, y, z) qui défini les directions de polarisation des ondes lumineuses incidente et diffusée, est tourné de $\theta = \pi / 4$ par rapport aux axes (X, Y, Z) défini par les axes de symétrie du système cristallin \\ \begin{bmatrix} J_{id} = I_{0} \left(\frac{\pi^{2}}{2\lambda_{0}^{4}} \right) n_{i}^{3} n_{d}^{5} \quad k_{B} T \left(\frac{\beta'_{id}}{\rho V^{2}} \right) v_{0} \\ \end{bmatrix} \\ \vec{L}_{VV} = I_{11} \propto \beta'_{11} \\ \vec{L}_{VH} \cong I_{12} \propto \beta'_{12} \\ \vec{L}_{HV} \cong I_{31} \propto \beta'_{31} \\ \vec{L}_{HH} \cong I_{32} \propto \beta'_{32} \\ \vec{L}_{HV} \cong I_{12} \propto \beta'_{12} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{12} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{22} \\ \vec{L}_{HV} \equiv I_{22} \propto \beta'_{22} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{21} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{22} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{21} \\ \vec{L}_{HV} \equiv I_{21} \propto \beta'_{22} \\ \vec{L}_{HV} \equiv I_{21} \qquad$$

Cas d'une rotation de θ autour de l'axes Ox_1 du système d'axes propres du cristal

 $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \qquad R^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$

 $\begin{bmatrix} \Delta B_{11}' \\ \Delta B_{22}' \\ \Delta B_{33}' \\ \Delta B_{33}' \\ \Delta B_{23}' \\ \Delta B_{13}' \\ \Delta B_{12}' \end{bmatrix} = \begin{bmatrix} \beta'_1 \\ \beta'_2 \\ \beta'_3 \\ \beta'_4 \\ \beta'_5 \\ \beta'_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos^2 \theta & \sin^2 \theta & \sin 2\theta & 0 & 0 \\ 0 & \sin^2 \theta & \cos^2 \theta & -\sin 2\theta & 0 & 0 \\ 0 & -\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \theta & -\sin \theta \\ 0 & 0 & 0 & \cos \theta & \sin \theta \cos \theta \end{bmatrix} \begin{bmatrix} \Delta B_{11} \\ \Delta B_{22} \\ \Delta B_{33} \\ \Delta B_{23} \\ \Delta B_{13} \\ \Delta B_{12} \end{bmatrix}$

$$\begin{aligned} & \int_{VV} = \int_{11} \propto \beta'_{11}^{2} & \hat{\mu}_{0} = \mu_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \\ & \beta'_{11} = \beta_{11} & \hat{\mu}'_{11} = p_{11}s_{1} + p_{12}s_{2} + p_{13}s_{3} + p_{14}s_{4} \\ & or & \frac{s_{1} = \alpha_{1}x_{1} = 0}{s_{2} = \alpha_{2}x_{2} = 0} & \frac{s_{3} = \alpha_{3}}{s_{4} = \alpha_{2}} & \frac{s_{5} = \alpha_{1}}{s_{6} = 0} & \text{donc} & \beta'_{11} = p_{13}\alpha_{3} + p_{14}\alpha_{2} \\ & \text{Raie L:} & \hat{\mu}_{0} = \mu_{0}(0,0,1) \Rightarrow \beta'_{11} = p_{13} \\ & \text{Or voit donc la raie longitudinale one of the restriction of the r$$

$$\begin{aligned} \mathbf{J}_{HV} &= \mathbf{J}_{31} \propto \beta_{31}^{\prime 2} & \mathbf{i}_{0} = u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \\ \beta_{31}^{\prime} &= (\beta_{12} + \beta_{13}) \sqrt{2}/2 & \mathbf{j}_{12}^{\prime} = (p_{14}s_{5} + (p_{11} - p_{12})s_{2}/2 - p_{44}s_{5} - p_{44}s_{3})/\sqrt{2}/2 \\ \mathbf{or} \quad s_{1} = \alpha_{1}\chi_{1} = 0 & s_{3} = \alpha_{3} & s_{5} = \alpha_{1} \\ s_{2} = \alpha_{2}\chi_{2} = 0 & s_{4} = \alpha_{2} & s_{6} = 0 \\ \mathbf{aie L} : \quad \mathbf{u}_{0} = u_{0}(0,0,1) \Rightarrow \beta_{13}^{\prime} = 0 & \mathbf{Raie non visible} \\ \mathbf{Raie T}_{1} : \quad \mathbf{u}_{0} = u_{0}(1,0,0) & \beta_{13}^{\prime} = (p_{14} + p_{44})\sqrt{2}/2 & \mathbf{Raie visible} \\ \mathbf{On voit donc la raie} \\ \mathrm{transversale avec l'intensité} : & \mathbf{I}_{12}^{\tau_{1}} \cong \mathbf{I}_{0} \left(\frac{\pi^{2}}{2\lambda_{0}^{\prime}} \right) n_{s}^{s} n_{s}^{s} k_{B} T \left(\frac{(p_{14} - p_{44})^{2}}{2\rho V_{\tau_{1}}^{\prime 2}} \right) \mathbf{v}_{0} \\ \mathbf{Raie T}_{2} : \quad \mathbf{u}_{0} = u_{0}(0,1,0) \Rightarrow \beta_{13}^{\prime} = 0 & \mathbf{Raie non visible} \\ \mathbf{Vision Brillouin de la lumière dans les solides} \end{aligned}$$

$$\begin{aligned} & I_{HH} = I_{32} \propto \beta'_{32}^{2} & \tilde{u}_{0} = u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \\ \beta'_{32} = (\beta_{22} - \beta_{33})/2 & \beta'_{32} = (p_{12} - p_{13})s_{1} + [p_{11} - p_{32}]s_{2} + [p_{13} - p_{33}]s_{3} - p_{14}s_{2})/2 \\ \text{Or} & s_{1} = \alpha_{1}\chi_{1} = 0 & s_{3} = \alpha_{3} & s_{5} = \alpha_{1} & \text{donc} \\ s_{2} = \alpha_{2}\chi_{2} = 0 & s_{4} = \alpha_{2} & s_{6} = 0 & \beta'_{32} = (p_{13} - p_{33})\alpha_{3} - p_{14}\alpha_{2} \end{aligned}$$

$$\begin{aligned} \text{Raie L}: & \tilde{u}_{0} = u_{0}(0,0,1) \Rightarrow \beta'_{32} = (p_{13} - p_{33})/2 & \text{Raie visible} \\ \text{On voit donc la rate longitudinale avec l'intensité}: & I_{11}^{L} \cong I_{0}\left(\frac{\pi^{2}}{2\lambda_{0}^{4}}\right) n_{s}^{2} n_{s}^{5}k_{s} T\left(\frac{(p_{13} - p_{33})^{2}}{4\rho V_{1}^{2}}\right) v_{0} \end{aligned}$$

$$\begin{aligned} \text{Raie T}_{1}: & \tilde{u}_{0} = u_{0}(1,0,0) \Rightarrow \beta'_{32} = 0 & \text{Raie non visible} \end{aligned}$$

$$\begin{aligned} \text{Raie T}_{2}: & \bar{u}_{0} = u_{0}(0,1,0) \Rightarrow \beta'_{32} = -p_{14}/2 & \text{Raie visible} \\ \text{On voit donc la rate transversale avec l'intensité}: & I_{11}^{(T_{7})} \cong I_{0}\left(\frac{\pi^{2}}{2\lambda_{0}^{4}}\right) n_{s}^{3} n_{s}^{5}k_{s} T\left(\frac{p_{14}^{2}}{4\rho V_{7}^{2}}\right) v_{0} \end{aligned}$$

Bab. Table and

 $\frac{C_{44} + C_{11}}{2} + C_{14} + C_{14} + \frac{C_{44} + C_{13}}{2} + \frac{C_{44} + C_{13}}{2} + \frac{C_{44} + C_{13}}{2} + \frac{C_{44} + C_{33}}{2} + \frac{C_{44} + C_{34}}{2} + \frac{C_{44} + C_{34}}{2} + \frac{C_{44} + C_{34}}{2} + \frac{C_{44} + C_{34}}{2} + \frac{C_{44} +$ $\vec{q} = q(0, \sqrt{2}/2, \sqrt{2}/2) \quad \vec{u}_0 = u_0(\alpha_1, \alpha_2, \alpha_3)$ Coordonnées exprimées dans le repère (X,Y,Z)

Le système d'axes (x,y,z) qui défini les directions de polarisation des ondes lumineuses incidente et diffusée, est tourné de $\theta = -\pi/4$ par rapport aux axes (X, Y,Z) défini par les axes de symétrie du système cristallin

66

[*Γ*] =

$$I_{id} = I_0 \left(\frac{\pi^2}{2\lambda_0^4} \right) n_i^3 n_d^5 k_B T \left(\frac{\beta'_{id}}{\rho V^2} \right) v_0 \qquad \begin{array}{c} \text{Ici dans} \\ \text{tous les cas} \\ n_V = n_X \\ n_H = n_y \end{array}$$

$$I_{11} \propto \beta'_{11}^2 I_{VH} = I_{12} \propto \beta'_{12}^2 I_{HV} = I_{21} \propto \beta'_{21}^2 I_{HH} = I_{22} \propto \beta'_{22} \end{array}$$

 $I_{\nu\nu} = I$

Les fréquences des raies enregistrées sont liées aux vitesses des ondes élastiques par les relations habituelles :

$$v_{qL} = \frac{v_0}{c} (n_i + n_d) V_{qL} \qquad v_{qT} = \frac{v_0}{c} (n_i + n_d) V_{qT} \qquad v_T = \frac{v_0}{c} (n_i + n_d) V_T$$

Les vitesses des ondes élastiques détectées sont

$$V_{T} = \sqrt{(C_{66} + C_{44} + 2C_{16})/2\rho}$$

$$V_{qL} = \sqrt{\frac{C_{11} + C_{33} + 2(C_{44} - C_{14}) + \sqrt{(C_{11} - C_{33} - 2C_{14})^2 + 4(C_{13} + C_{44} - C_{14})^2}{4\rho}}$$

$$V_{qT} = \sqrt{\frac{C_{11} + C_{33} + 2(C_{44} - C_{14}) - \sqrt{(C_{11} - C_{33} - 2C_{14})^2 + 4(C_{13} + C_{44} - C_{14})^2}{4\rho}}$$

Cas d'une rotation de θ autour de l'axes Ox_1 du système d'axes propres du cristal

 $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \qquad R^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$

 $\begin{bmatrix} \Delta B_{11}' \\ \Delta B_{22}' \\ \Delta B_{33}' \\ \Delta B_{33}' \\ \Delta B_{23}' \\ \Delta B_{13}' \\ \Delta B_{12}' \end{bmatrix} = \begin{bmatrix} \beta'_1 \\ \beta'_2 \\ \beta'_3 \\ \beta'_4 \\ \beta'_5 \\ \beta'_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos^2 \theta & \sin^2 \theta & \sin 2\theta & 0 & 0 \\ 0 & \sin^2 \theta & \cos^2 \theta & -\sin 2\theta & 0 & 0 \\ 0 & -\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \theta & -\sin \theta \\ 0 & 0 & 0 & \cos \theta & \sin \theta \cos \theta \end{bmatrix} \begin{bmatrix} \Delta B_{11} \\ \Delta B_{22} \\ \Delta B_{33} \\ \Delta B_{23} \\ \Delta B_{13} \\ \Delta B_{12} \end{bmatrix}$

$$\begin{aligned} \mathbf{I}_{vv} &= \mathbf{I}_{11} \propto \beta'_{11}^{2} & \mathbf{\hat{u}}_{0} = u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \\ \beta'_{11} &= \beta_{11} & \beta'_{11} = p_{11}S_{1} + p_{12}S_{2} + p_{13}S_{3} + p_{14}S_{4} \\ s_{1} &= \alpha_{1}\chi_{1} = 0 \quad s_{2} = \alpha_{2}/\sqrt{2} \quad s_{3} = \alpha_{3}\sqrt{2}/2 \quad s_{4} = (\alpha_{2} + \alpha_{3})/\sqrt{2} \quad s_{5} = \alpha_{1}/\sqrt{2} \\ s_{5} &= s_{5} \quad \text{donc} \quad \beta'_{11} = (p_{12}\alpha_{2} + p_{13}\alpha_{3} + p_{14}[\alpha_{2} + \alpha_{3}])/\sqrt{2} \\ \text{Raie L} \quad \mathbf{\hat{u}}_{0} &= u_{0}(0,1,1)/\sqrt{2} \\ \text{On voit donc la raie longitudinale avec l'intensité: } & \beta'_{11} = (p_{12} + p_{13} + 2p_{14})/2 \\ \text{Invoit donc la raie longitudinale avec l'intensité: } & \mathbf{\hat{\mu}}_{11}^{2} = (\mathbf{\hat{\mu}}_{12} + p_{13} + 2p_{14})/2 \\ \text{Raie T}_{1} : \quad \mathbf{\hat{u}}_{0} &= u_{0}(1,0,0) \quad \Rightarrow \beta'_{11} = 0 \\ \text{Raie T}_{1} : \quad \mathbf{\hat{u}}_{0} &= u_{0}(0,1,-1)/\sqrt{2} \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{Raie total barbele} \\ \text{Raie T}_{2} : \quad \mathbf{\hat{\mu}}_{0} &= u_{0}(0,1,-1)/\sqrt{2} \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec l'intensité: } & \beta'_{11} = (p_{12} - p_{13})/2 \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec l'intensité: } \\ \text{On voit donc la raie transversale avec$$

Remarque : pour un verre $p_{12} = p_{13}$ donc

Raie T2.
$$\vec{u}_0 = u_0(0, 1, -1) / \sqrt{2}$$
 $\beta'_{11} = (p_{12} - p_{13}) / 2 = 0$ $I_{11}^{(T_2)} = I_0 \left(\frac{\pi^2}{2\lambda_0^4}\right) n_y^3 n_z^5 k_\beta T \left(\frac{\beta'_{11}}{C_{44}^2}\right) v_0 = 0$ Raie transversale non visible en rétrodiffusion

Seule la raie longitudinale est visible en rétrodiffusion et configuration VV

$$\begin{aligned} I_{VH} &= I_{12} \propto \beta'_{12}^{2} \qquad \beta'_{12} = (\beta_{12} - \beta_{13}) / \sqrt{2} \\ \vec{u}_{0} &= u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \qquad \beta'_{12} = \{(p_{14} - p_{44})s_{5} + (p_{11} - p_{12}) / 2 - p_{14})s_{6}\} / \sqrt{2} \\ s_{1} &= \alpha_{1}\chi_{1} = 0 \qquad s_{2} = \alpha_{2} / \sqrt{2} \qquad s_{3} = \alpha_{3} \sqrt{2} / 2 \qquad s_{4} = (\alpha_{2} + \alpha_{3}) / \sqrt{2} \qquad s_{5} = \alpha_{1} / \sqrt{2} \\ s_{6} &= s_{5} \qquad \text{donc} \qquad \beta'_{12} = \{-p_{44} + (p_{11} - p_{12}) / 2)\}\alpha_{1} / 2 \\ \text{Raie L} \quad \vec{u}_{0} &= u_{0}(0, 1, 1) / \sqrt{2} \qquad \alpha_{1} = 0 \qquad \Rightarrow \beta'_{12} = 0 \qquad \text{Raie non visible} \\ \\ \text{Raie T}_{1} : \quad \vec{u}_{0} &= u_{0}(1, 0, 0) \\ \text{On voit donc la raie transversale avec l'intensite} \qquad I_{12}^{2} (\tau_{1}) = I_{0} \left(\frac{\pi^{2}}{2\lambda_{0}^{4}}\right) n_{y}^{5} n_{5}^{5} k_{B} T \left(\frac{\beta'_{12}}{pV_{1}^{2}}\right) v_{0} \qquad \text{Raie visible} \\ \\ \text{Raie T}_{2} : \quad \vec{u}_{0} &= u_{0}(0, 1, -1) / \sqrt{2} \qquad \alpha_{1} = 0 \qquad \Rightarrow \beta'_{12} = 0 \qquad \text{Raie non visible} \end{aligned}$$

CIII

Remarque : pour un verre $p_{44} = [p_{11} - p_{12}]/2$ donc

$$\frac{\text{Raie } \mathbf{T}_{1} : \vec{u}_{0} = u_{0}(1,0,0)}{\text{la raie transversale n'est}} \begin{bmatrix} \beta'_{12} = \{-p_{44} + ([p_{11} - p_{12}]/2)\}\alpha_{1}/2 = 0 \\ \mathbf{I}_{12}^{(\tau_{1})} = \mathbf{I}_{0}\left(\frac{\pi^{2}}{2\lambda_{0}^{4}}\right)n_{y}^{3}n_{z}^{5}k_{B}T\left(\frac{\beta'_{12}}{\rho V_{T_{1}}^{2}}\right)v_{0} = 0 \end{bmatrix}$$

Raie transversale non visible en rétrodiffusion

Aucune la raie n'est visible en rétrodiffusion et configuration VH

$$I_{144} = I_{22} \propto \beta'_{22}^{2} \quad \vec{u}_{0} = u_{0}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \quad \beta'_{12} = (\beta_{22} + \beta_{33})/2 + \beta_{23}$$

$$\beta'_{22} = (p_{12}/2 + p_{13} + p_{14})s_{1} + (p_{11} + p_{13} - p_{14})s_{2} + (+p_{13} + p_{33})s_{3} + (+p_{44} + p_{14})s_{4}$$

$$p_{3}^{2} = (p_{12}/2 + p_{13} + p_{14})s_{1} + (p_{11} + p_{13} - p_{14})s_{2} + (+p_{13} + p_{33})s_{3} + (+p_{44} + p_{14})s_{4}$$

$$p_{3}^{2} = (p_{11}/2 + p_{13} - p_{14})\alpha_{2}/\sqrt{2} + (p_{13} + p_{33})\alpha_{3}/\sqrt{2} + (+p_{44} + p_{14})(\alpha_{2} + \alpha_{3})/\sqrt{2}$$

$$Raie L : \quad \vec{u}_{0} = u_{0}(0, 1, 1)/\sqrt{2}$$

$$Raie L : \quad \vec{u}_{0} = u_{0}(0, 1, 1)/\sqrt{2}$$

$$Raie T_{1} : \quad \vec{u}_{0} = u_{0}(1, 0, 0)$$

$$\beta'_{22} = (p_{12}/2 + p_{13} + p_{14})s_{1} = 0$$

$$Raie T_{2} = \vec{u}_{0} = u_{0}(0, 1, -1)/\sqrt{2}$$

$$Raie T_{2} = \vec{u}_{0} = u_{0}(0, 1, -1)/\sqrt{2}$$

$$Raie T_{2} = (p_{12}/2 + p_{13} + p_{14})s_{1} = 0$$

$$Raie T_{2} = \vec{u}_{0} = u_{0}(0, 1, -1)/\sqrt{2}$$

$$Raie T_{2} = (p_{12} - p_{33} - 3p_{14})/4$$

$$Raie Visible$$

Remarque : pour un verre $p_{11} = p_{33}$ et $p_{14} = 0$ donc

Raie T_2:

$$\beta'_{22} = (p_{11} - p_{33} - 3p_{14})/4 = 0$$

 Ia raie transversale a l'intensité:
 $I_{22}^{(T_2)} = I_0 \left(\frac{\pi^2}{2\lambda_0^4}\right) n_y^3 n_z^5 k_B T \left(\frac{\beta'_{22}}{\rho V_{T_2}^2}\right) v_0 = 0$

Raie transversale non visible en rétrodiffusion

Seule la raie longitudinale est visible en rétrodiffusion et configuration VV

Propriétés photoélastiques des verres (SiO₂)_{1-x}(Na₂O)_x

(Avec la participation, pour la partie expérimentale, de A. Mauduit (1997) : stage de maîtrise de physique)

Carleton (1972) et Schroeder (1980) ont proposé :

$$p_{11} = \frac{\left(n^2 - I\right)^2}{n^4} \left[\left(\frac{\varepsilon_0}{\alpha \rho}\right) + \left(\frac{4}{15}\right) - \left(\frac{14}{15}\right)\Gamma \right] \qquad p_{12} = \frac{\left(n^2 - I\right)^2}{n^4} \left[\left(\frac{\varepsilon_0}{\alpha \rho}\right) - \left(\frac{2}{15}\right) - \left(\frac{8}{15}\right)\Gamma \right]$$

la relation de Cauchy :
$$|p_{44}| = \frac{1}{2}|p_{11} - p_{12}|$$

permet de déduire :

$$p_{44} = \frac{\left(n^2 - 1\right)^2}{n^4} \left[\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right)\Gamma \right] \qquad \text{où} \qquad \Gamma = \frac{3\alpha}{4\pi\varepsilon_0} \int_0^\infty g_{12}(r) \frac{dr}{r^4}$$

 $\alpha = 4,04.10^{-24} \text{ cm}^3$ $\alpha = 5,45.10^{-24} \text{ cm}^3$ $\alpha = 5,44.10^{-24} \text{ cm}^3$

pour la silice pour la molécule SiF₄ pour la molécule SiH₄

notre travail (Maryott, 1953) (Maryott, 1953)

 $\alpha = \frac{q^2}{\varepsilon_0 \mu \omega^2}$

Composé/modes	ν ₁	V2	V3	ν4
$[SiO_4]^{4-}$	819	340	956	527
NaO ₄ I.R.		886, 880	1425, 1413	701, 694
NaO ₄ Raman	1084, 1079		1432, 1423	702, 698

Extraction of the natural Brillouin line :

deconvolution of the spectrum : several technics

(H.W. Leidecker J.A.S.A. 1967 D. Walton S.S.C. 1982 G.E. Durand IEEE J.Q.E.1968 A.S. Pine PR 1969)

For example :

 $I_{Brillouin}^{exp}(v) = S_{nat}(v) * I_{app}(v)$

Lorentzian

Gaussian

Experimental Brillouin linewidth : convolution of

- Natural Brillouin linewidth $\Delta \Gamma_{B} \approx 0.1 \text{ GHz}$

- Instrumental linewidth ($\approx 1 \text{ GHz}$)

Phonon liftime τ : $\tau = \frac{1}{\Delta\Gamma_{P}}$

Phonon attenuation coefficient α :

$$\Delta \Gamma_{\mathcal{B}} = \frac{\alpha V_{\ell}}{\pi}$$

From the Brillouin line shapes we deduce

 Structural informations via the lifetime of vibrational waves

• Characterization of relaxation phenomenons bonded to rearrangements of the structure

- Properties controlled by vibrational waves
 - Thermal expansion coefficient and its anomalies
 - Anharmonicity

(R. Vacher , communication at this Conference 8th ESG 2006, and PRB 2005)

References :

- THE RAMAN EFFECT, a unified treatment of the theory of Raman scattering by molecules, Derek A. Long, Wiley 2002
- Infrared and Raman Spectroscopy, Mehtods and Applications, Edited by B. SchraderVCH, 1995
- Carleton H. R, in Amorphous Materials, eds R.W. Douglas & Bryan Ellis (Wiley, Interscience, New-York, 1972) 103.
- Durand G.E. et al, IEEE, J. Quant. Electron. <u>4</u> (1968) 523
- Laberge N. L., et al J. of the Am. Ceram. Soc. <u>56</u> (1973) 506-509
- Leidecker H.W. et al J. Acoustic Soc. Am. <u>43</u> (1967), 737
- Malki M. Et al Phys. Rev. Lett. <u>96</u> (2006) 145504
- Pine A.S. Phys. Rev. <u>185</u> (1969) 1187
- Phillips J.C. J. of Non-Crystalline Solids <u>34</u> (1979), 153-181
- Saito K. et al A. J. App. Phys. Lett. <u>70</u> (1997) 3504-3506
- Schroeder J., et al J. of the Am. Ceram. Soc. <u>56</u>, vol. 10 (1973) 510-514
- Schroeder J., et al J. of Non-Crystalline Solids <u>40</u> (1980) 549-566.
- Schroeder J. J. of Non-Crystalline Solids <u>102</u> (1988) 240-249
- Thorpe M.F. JNCS <u>859</u> (2000), 266-269
- Vacher R. et al J. de Chimie Physique <u>82</u> (1985), 311-316
- Vacher R. et al Phys. Rev. B <u>72</u>, (2005), 214205
- Vaills Y. et al JNCS <u>286</u>, (2001), 224-234
- Vaills et al J. of Physics C <u>17</u> (2005), 4889-4896
- Vaills Y. web page : <u>http://www.cemhti.cnrs-orleans.fr/?nom=vaills</u>
- Varshneya A.K. Fundamentals of inorganic glasses, Soc. Of Glass Tech., 2006
- Walton D. et al, Sol. St. Comm. <u>42</u> (1982), 737

